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Abstract

Monitoring trends in the structure and composition of vegetation

structure is a critical part of land and wildlife management.

Advanced tools and technologies can help reduce the cost and

improve the implementation of such monitoring. Most applica-

tions of remote‐sensing technologies, however, focus on either

vegetation structure reflecting habitat requirements of a single

avian species or on general measures of ecosystem productivity

or biodiversity. While important, these applications ignore the

needs of many applied land and wildlife managers who are often

legally or administratively tasked with managing landscapes for

multiple avian species with divergent habitat requirements. We

used current state‐of‐the‐art technologies to assess vegetation

structure in a dryland riparian ecosystem and compared this

structure to avian nesting habitat metrics. We demonstrated how

3‐dimensional canopy structure, including multi‐layer canopy

cover, voxelized leaf area density, and habitat‐based patch‐level

leaf area density, can be quantified and tied to each species' a

priori known nesting habitat. We evaluated these results in light

of monitoring vegetation potentially serving as nesting habitat for

3 species of management concern. We also provided directions

on future monitoring to ensure that managed parcels provide

suitable vegetation structure for at least some, and possibly all, of

the species given their divergent habitat requirements.
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Land and wildlife managers use monitoring to identify undesired changes in ecological systems and monitor

progress towards restoration of naturally or human‐degraded systems. Most ecosystems are monitored to some

extent, and each extent can present its own practical challenges. In many ecosystems, riparian zones present

additional challenges because the higher average presence and availability of water stimulates additional plant

growth, making manually‐collected field observations and data difficult to obtain (Macfarlane et al. 2016). A

separate challenge is the issue of extent, such that the size of the areas we usually wish to monitor vastly exceeds

the resources available to conduct large‐scale monitoring of riparian habitats (Pace et al. 2022). Both types of

challenges have spurred rapid development and adoption of new conservation tools for riparian monitoring,

especially focused on the use of remotely‐sensed data sources such as light detection and ranging (lidar) and

multispectral imagery (Macfarlane et al. 2016, Acebes et al. 2021, Lahoz‐Monfort and Magrath 2021, Rusnák

et al. 2022). These tools have dramatically improved our ability to understand, among many other things, riparian

vegetation communities and ecosystem function (Pace et al. 2022, Rommel et al. 2022), vegetation structure

(Bergen et al. 2009, Moudrý et al. 2023) avian abundance, distribution, and species richness (Mcfarland et al. 2012,

Bakx et al. 2019), and general biodiversity (Acebes et al. 2021). While managers' main goals are often to identify and

monitor habitat for focal species, that can be very difficult due to the complexity of habitat as a whole, so we tend

to use components of habitat such as the list above as proxies for direct measures of habitat.

While powerful, useful, and important, the current applications of these tools tend to focus on either end of a

spatio‐ecological spectrum, i.e., general indices of ecological function and biodiversity over large spatial scales, or a

highly detailed small‐scale focus on habitat requirements of an individual species (Bakx et al. 2019). Both foci are

necessary in their own right. Ecosystems and landscapes are large, concomitant with negative human impacts, and

such general views require ignoring fine‐scale patterns in order to monitor the bigger picture. This broad focus can

better assist regional or global efforts aimed at monitoring and ameliorating decline in ecological structure and

function (Vihervaara et al. 2017, Acebes et al. 2021, Rusnák et al. 2022). On the other hand, species‐specific

monitoring using remote sensing tools at small scales is also important, as individual species are often of specific

management importance. Collecting better and lower cost data can improve management outcomes for those

species (Hopkins et al. 2022, Hu and Tong 2022, Dickie et al. 2023). We argue that what is currently missing in this

spatio‐ecological spectrum is the middle ground, whereby remote sensing technologies are applied over moderate

scales or levels (e.g., entirety or portions of management areas) and for vegetation structure related to multiple

targeted wildlife species simultaneously (White et al. 2013, Van Lanen et al. 2023).

In contrast to focusing on broad, multi‐jurisdictional questions, most land and wildlife managers work at local to

regional levels, for example, in individual parks, districts, or geopolitical regions. These managers have responsi-

bilities over some of the activities that, in aggregate, result in positive or negative impacts on local habitat and

populations. For example, a manager's sphere of influence may include permitting individual energy development

projects, reducing subsistence poaching in protected areas, or restoring degraded vegetation along streambanks. As

part of these responsibilities, local and regional managers are also often required to implement monitoring programs

for species and habitats of concern, such as at‐risk species (e.g., those listed under legal frameworks such as the U.S.

Endangered Species Act) or at‐risk habitats (e.g., Murray‐Darling Basin wetlands in Australia). Methods that increase

the accuracy and decrease the cost of monitoring could be invaluable to these managers in achieving their missions.

Current applications of remote sensing of the environment focus on the ability of remotely‐sensed data to

address large‐scale questions, often at the level of entire rivers or the distribution of a species (Rodríguez‐González

et al. 2017, Hopkins et al. 2022, Rusnák et al. 2022). This has allowed data to be collected at scales not previously

possible, which is a huge step forward for global conservation (Vihervaara et al. 2017). However, much, or even

most, of land and wildlife management activities occur at small scales such as wildlife management areas or

individual river reaches. We suggest that remote sensing can also play a role in quantifying and monitoring veg-

etation structure that is reflective of avian nesting habitat at these smaller scales to provide a quicker, less

expensive, and more comprehensive quantification of habitat structure than field sampling has traditionally pro-

vided. Some examples of remote sensing at this scale exist, such as forest stand structure for pileated woodpecker
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(Drycopus pileatus) habitat (Hu and Tong 2022). Yet, even in that case, the focus is usually on a single species of

management priority. While legal status can certainly prioritize the management of some species over others, land

and wildlife managers are often interested in identifying and managing habitat for multiple species simultaneously

(White et al. 2013, Van Lanen et al. 2023).

Monitoring of habitat has the added challenge of habitat reflecting interactions between individual

organisms and the environment (Johnson 2007). A working definition of habitat was provided by Hall et al.

(1997:175), where they defined habitat as “the resources and conditions present in an area that produce

occupancy—including survival and reproduction—by a given organism.” But managers must balance the depth

of information desired (e.g., detailed information on reproductive habitat for a given species) with the breadth

of information required (e.g., multiple habitats for multiple species). A common balance is monitoring vege-

tation communities that, in general, are associated with known habitat for species of interest. For example,

reproductive habitat of California northern spotted owls (Strix occidentalis occidentalis) has been demonstrated

to be positively linked to higher canopy coverage of tall trees, therefore managers often monitor the vege-

tation structure of forest stands only (North et al. 2017). In the current study we also monitored vegetation

structure, not habitat per se. Point count survey data were available but were at a coarse resolution and only

reflected bird presence, not necessarily habitat quality in general nor nesting habitat presence specifically

(Van Horne 1983). Therefore, we compared distributional overlaps of species‐specific nesting habitat vari-

ables and measured vegetation structure.

In this study, we applied high‐resolution remote‐sensing technologies to a small management area, but

have used techniques that are scalable to a more intermediate‐size management area. Clark County, Nevada,

USA, is home to several state‐ and federally listed species of concern, including multiple threatened or en-

dangered species. As part of a permit from the U.S. federal government to allow development of private land

within Clark County, including incidental take of protected species, the Clark County Desert Conservation

Program implements a habitat conservation plan that requires them to conserve and manage 76 avian, mammal,

amphibian, reptile, invertebrate, and plant species. Managing multiple species, often with diverging habitat

requirements, requires effective and efficient monitoring to identify declines in species abundance or habitat

quality so that conservation projects can be implemented where needed (Clark County 2000). Our objective

was to use multispectral imagery and aerial lidar to quantify vegetation structure for 3 bird species known to

occur in our study area: Bell's vireo (Vireo bellii), blue grosbeak (Passerina caerulea), and phainopepla (Phaino-

pepla nitens). Our ultimate goal was to demonstrate the use of remote‐sensing tools that quantify vegetation

structure for use by land and wildlife managers globally.

STUDY AREA

The 43.1‐ha study area was located in the northeast Mojave Desert, in northeastern Clark County, USA, a

20,880 km2 geopolitical division at the southern end of the state of Nevada (Figure 1). Clark County is home to

the city of Las Vegas, with a metropolitan population of >1.8 million (U.S. Census Bureau 2022). The northeast

Mojave Desert is characterized by winter rain and snow and summer monsoon rains (Pietrasiak et al. 2014).

Precipitation is low, averaging 11 cm per year (Abella et al. 2009). The study area included the active floodplain

of the Virgin River, with the river cutting through the site from east to west. The area included large portions

that have been anthropogenically disturbed such as a large historic levee and areas that have been completely

cleared of vegetation.

Riparian and upland vegetation were present throughout the study area. The vegetation on site was a mosaic of

varying types and sizes, including arrowweed (Pluchea sericea), tamarisk (Tamarix spp.), seep willow (Baccharis

salicifolia), big saltbush (Atriplex lentiformis), screwbean mesquite (Prosopis pubescens), and a few mature Gooding's
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willows (Salix gooddingii) within the floodplain itself. The tops of many of the tamarisks appeared dead, most likely as

a result of repeated defoliation by the tamarisk leaf beetle (Diorhabda carinulata).

METHODS

To develop a suite of tools to support quantitative avian vegetation monitoring, we used imagery and aerial lidar

data to conduct 3 primary analyses. These analyses were structural and included canopy height‐specific percent

canopy cover estimation, voxelized leaf area density (LAD), and patch‐based LAD.

We focused on 3 of the avian species that Clark County is required to monitor and conserve on managed

properties (blue grosbeak, phainopepla, and Bell's vireo) because these species have been observed in the study

area on previous point count surveys (S. Cambrin, Clark County Department of Environment and Sustainability,

unpublished data). These species are similar in that they all require trees or shrubs as nest substrates, but the types

F IGURE 1 Study area for quantifying structural composition of riparian avian habitat along the Virgin River,
Nevada, USA, April 2021.
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of trees and stands they nest in varies. For example, Bell's vireo nest low (~1m) in small trees with dense understory

vegetation, whereas phainopepla nest a bit higher (~3.5m) and blue grosbeak nest high (~7–8m) with low un-

derstory vegetation density (Powell and Steidl 2000). Phainopepla prefer lower canopy cover (~45%), whereas Bell's

vireo and blue grosbeak prefer moderately high canopy cover (~60%; Powell and Steidl 2000, Allison et al. 2003).

Field data collection

We collected field data on 7–8 April, 2021, which was during the transition from winter leafless conditions (for deciduous

plants) and summer leafout conditions. We chose this period to balance capturing leafed‐out vegetation stands along with

other management goals that required that the aerial lidar points were able to reach ground level. Thus, some of our leaf‐

based calculations may have been underestimates of conditions later in the avian breeding season, but we expected that

they were comparable given partial leafout and permanent vegetation features (e.g., stems, perennial plants).

We collected aerial lidar using a single return Velodyne HDL‐32E LiDAR sensor (Velodyne Lidar, San Jose, CA,

USA) with 32 individual lasers flown on a Matrice 600 Pro hexacopter (DJI, Shenzhen, China) at a 60‐m altitude. We

established 5 ground control points to improve the absolute accuracy in location and measurements (distance, area,

height) of all collected data. Ground control points were dispersed primarily through the southeastern two‐thirds of

the study area because the Virgin River restricted access to the northwestern portion of the study area. We located

the ground control points using a Trimble R8 Base Station (Trimble, Westminster, CO, USA) with 1‐cm root square

mean error accuracy and a Trimble R10 real‐time kinematic rover. We also set a CHC Global Navigation Satellite

System Base Station (CHCNAV, Shanghai, China) on a surveyed point to collect position data for use in lidar

trajectory processing.

Data processing and analysis

We usedWaypoint Inertial Explorer (v 8.9; NovAtel, Calgary, AB, Canada) and the CHC Base Station data to process

the aerial lidar flight trajectory and Global Mapper (v 22; Blue Marble Geographics, Hallowell, ME, USA) for lidar

ground classification using the ground control points. Observed point density averaged 208.8 points per square

meter.

Leaf area density is the total 1‐sided leaf area per unit volume (i.e., m2/m3) and represents the density of

vegetation, an important metric for breeding riparian birds (Powell and Steidl 2000). For the LAD‐based structural

analyses, we made calculations at the voxel level. Voxels are the regular subunits of a 3‐dimensional grid the same

as pixels are the regular subunits of a 2‐dimensional grid, and thus, the dimensions of a voxel are defined by x, y, and

z. We set the x, y dimensions as 10 × 10m to match the field measurements of nesting desert riparian bird habitat in

Powell and Steidl (2000). We set the vertical z dimension at 0.6069m to match the California Department of Fish

and Wildlife guidelines (California Department of Fish and Wildlife [CDFW] 2021) for height categories (e.g., 2‐ft

increments). Based on CDFW (2021), we further delineated vertical structural categories into non‐breeding veg-

etation below 0.6069m (i.e., 2 ft, as delineated by CDFW), small trees/shrubs between 0.6069 and 3.048m

(2–10 ft), medium trees/shrubs between 3.048 and 6.069m (10–20 ft), and large trees/shrubs over 6.069m (>20 ft;

CDFW 2021). For simplicity from here throughout we simply refer to the height class breaks as 0.6 m, 3m, and 6m.

For all structural analyses, we cleaned the raw aerial lidar points file by classifying noise points using the

statistical outlier analysis in the lidR package (Roussel et al. 2021) in Program R (v 4.3, R Core Team 2023). We

created a digital terrain model in a geographic information system and then used this model to height‐normalize the

point file. We used the k‐nearest neighbor approach with the inverse‐distance weighting algorithm in lidR to

remove the effect of variable ground heights (i.e., topography, rocks, etc.) on the absolute elevation of each aerial

lidar return point. All analyses were conducted in Program R (v 4.3) and ArcMap (v 10.4).
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Canopy cover

We estimated canopy cover for each of our height classes by subsetting the height‐normalized points layer into each

height class, counting all aerial lidar return points within each height class and dividing the number of points within a

class by the number of points in the height class of interest plus all lower height classes, including below 0.6m and

ground returns. Essentially, we calculated the proportion of points that entered each height class but did not pass

through the height class. Thus a given pixel could have estimates of canopy cover for multiple height classes simulta-

neously (e.g. a shrub canopy under a tall tree canopy, with low vegetation cover in between those height classes).

Although this can technically be described as canopy closure from a very high number of single point vantages, we refer

to it as canopy cover (Jennings et al. 1999). We calculated canopy cover at a 10‐m resolution raster for each of the 3

height classes of interest to align with vegetation resolution of previous nesting habitat research on our focal species

(Powell and Steidl 2000; Table 1). Finally, we generated a truncated normal distribution of canopy cover associated with

nesting habitat for each of the 3 avian species, where the distributions were parameterized with the means and standard

deviations reported in Powell and Steidl (2000). We compared the distributions of nesting habitat canopy cover with

canopy cover distributions within discrete vegetation patches within our study area.

Voxelized LAD

We calculated the LAD within each voxel cell in the analysis area, from 0.6m aboveground to the highest observed

vegetation height using the canopyLazR package (Kamoske et al. 2019) in Program R. Prior to voxelization, ca-

nopyLazR mimics a canopy height model to height‐normalize the array of voxels. We then used the height‐

normalized array to calculate the LAD within each voxel using the method of MacArthur and Horn (1969). Finally,

we created a raster stack to view and manipulate the array LAD results.

Patch‐based LAD

We also separated the study area into habitat patches, using the structural categories of canopy height for nesting

riparian bird species defined by CDFW (2021), specifically height classes of 0 (<0.6 m), 1 (small trees/shrubs,

0.6–3.0 m), 2 (medium trees/shrubs, 3.0–6.0 m), or 3 (large trees/shrubs, >6.0m). First, we created a simple canopy

height model with a pixel size of 10m using the lidR package. We replaced any pixels with a value of NA with a

value of 0, then smoothed the canopy height model by replacing each pixel with the mean value of its immediate

TABLE 1 Vegetation structure of nest site locations for 3 avian species in the Mojave Desert, USA. Adapted
from Powell and Steidl (2000).

Vegetation structure Bell's Vireo Blue grosbeak Phainopepla

Canopy cover 64.0% (SD 25.2) 61.1% (SD 22.1) 44.9% (SD 13.9)

Vegetation volume Understory (<2m) 58.2% (SD 9.3) 20.8% (SD 7.6) 35.7% (SD 5.0)

Midstory (2–5m) 47.8% (SD 11.3) 24.4% (SD 8.1) 32.7% (SD 6.2)

Overstory (>5m) 21.5% (SD 11.3) 38.9% (SD 8.5) 7.3% (SD 4.6)

Nest height 0.9 m (SD 0.7) 7.1 m (SD 3.8) 3.5 m (SD 2.3)

Nest plant height 2.8 m (SD 1.3) 13.0m (SD 5.1) 5.1 m (SD 2.7)
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neighborhood (i.e., 3 × 3 cells) using the terra package. We did this to generalize the canopy height model into a

more ecologically realistic depiction, assuming that a single pixel with unusually low (i.e., a pit) or high (i.e., a single

tall plant) height would still be part of the surrounding patch as defined by canopy height.

To delineate patches, we reclassified the smoothed canopy height raster, then we converted the reclassified raster

into a simplified vector layer, which delineated patches of equal height classes. Next, we selected a subset of patches for

visualization, retaining patches of height class 1 and 2 that were >0.8 ha (~2 ac) and all class 3 patches (all <0.8 ha). Then

we calculated LAD within each discrete patch using the Bouvier et al. (2015) method implemented in lidR. Finally, we

selected 3 patches and compared their vertical LAD distributions with literature‐derived estimates of vegetation volume

selected at 3 categories of height above ground for 2 avian species, blue grosbeak and phainopepla. Prior to plotting

observed patch LAD vertical profiles, we converted height‐specific vegetation volume (Table 1) into LAD values to

reflect relative vegetation volume of known nesting habitat from Powell and Steidl (2000).

RESULTS

Canopy cover

Mean canopy cover of small trees/shrubs was 8.4% (SD = 12.8), 1.1% (SD = 4.4) for medium trees/shrubs, and 0.1%

(SD = 3.6) for tall trees/shrubs. For all trees and shrubs over 0.6 m, mean canopy cover was 9.2% (SD = 16.0). All

height classes had some grid cells with zero canopy cover or 100% cover. Most grid cells had some cover >0.6 m,

although this also included tall herbaceous plants and was not necessarily trees or shrubs (Figure 2). For small trees/

shrubs, 1.8% (0.76 ha) of the analysis area had small tree/shrub canopy cover >50%. For medium trees/shrub, only

0.03 ha had canopy cover >50%. No grid cells had tall tree/shrub canopy cover >70%. Mean canopy cover of all

trees and shrubs, regardless of height class, was 0.09 (SD = 0.16, min–max = 0–1).

Voxelized leaf area density

The voxelized LAD provided similar information as the canopy cover, but better reflected vegetation density than

simply cover. Because cover was highest at the lowest height class (i.e., 0.6–3.0 m), LAD was also highest at this

height class (Figure 3). Leaf area density decreased at the 2 higher height classes but showed general homogeneity

within each height class above ground at the resolution of 10‐m pixels.

Patch‐based leaf area density

The majority of the analysis area was comprised of 2 large patches of low trees/shrubs and one large patch of

medium trees/shrubs. Leaf area density within the tall patches was more variable among patches than for small and

medium height classes due to their comparably small size. For most patches, LAD profiles showed higher leaf area

closer to the ground, with decreasing leaf area up to canopy tops. LAD profiles for large trees showed different

vertical profiles reflecting tree physiognomy.

Avian nesting habitat

Based on canopy cover and voxelized leaf area density, we identified several patches with vegetation structure suitable for

nesting habitat by our species of interest. Canopy cover was highly variable among patches, but 3 patches (Patches 5–7)

QUANTIFYING VEGETATION STRUCTURE | 7 of 14
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F IGURE 3 Voxelized leaf area density (m2/m3) at a sample of 0.6‐m height classes along the Virgin River,
Nevada, USA, April, 2021. Grid cells are 10‐m resolution.

F IGURE 2 Canopy cover estimates derived from high‐resolution remote sensing data for A) small (0.6–3.0 m),
B) medium (3.0–6.0 m), C) large (>6.0m), and D) all (>0.6 m) trees and shrubs along the Virgin River, Nevada, USA,
April, 2021. Grid cells are 10‐m resolution.
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had distributions of canopy cover well within the observed distribution of canopy cover at nest sites (Figure 4). Patch 4 had

high variability yet indicated some grid cells with suitable canopy cover, and Patches 1–3 had too low of canopy cover

(Figure 4). Vertical profiles of leaf area density compared to vertical profiles of percent vegetation coverage served as a

qualitative metric of suitability of patches for nesting habitat. For example, Patch 1 showed an equivalent vertical profile as

that selected by phainopepla, but at lower total vegetation density (Figure 5). Patches 5 and 7, however, had vertical

profiles similar to nesting stands selected by blue grosbeak and phainopepla, respectively.

Tall canopy patches were lacking within the study area, suggesting little to no nesting habitat for species that

require tall, closed canopies and/or cottonwood stands. The largest single vegetation patch (Patch 1 in Figure 5), was

shorter and more sparsely vegetated than nesting stands for either blue grosbeak or phainopepla. However, some small

patches were of suitable canopy height, had suitable distributions of canopy cover, and had vertical vegetation density

profiles similar to known nesting habitat. For example, Patch 5 roughly matched the vertical profile of vegetation volume

F IGURE 4 Density distributions of avian species of interest (color fill) and observed canopy cover at patches in
the study area (gray fill). Inset plot is the mean (dot) and 90% interval (horizontal lines) for canopy cover. Vertical
dashed line is approximate 90% minimum canopy cover for all 3 avian species.
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selected by blue grosbeaks, with low understory and high overstory density. In contrast, Patch 7 had high understory

and midstory vegetation density, matching the vertical profile preferred by phainopepla.

DISCUSSION

We found that the vegetation structure in our study area likely provides nesting habitat for some but not for all of

our avian species of interest. This is not necessarily a failure on the part of managers, as divergent habitat

requirements of multiple species likely precludes any location from supporting all possible species. Instead, we

F IGURE 5 Vertical profile of leaf area density at 3 example patches (gray fill) compared to profile of relative
vegetation density preferred by nesting blue grosbeak and phainopepla (adapted from Powell and Steidl 2000).
Study area was in the northeastern Mojave Desert, Nevada, USA, 2021.

10 of 14 | HARJU ET AL.

 23285540, 0, D
ow

nloaded from
 https://w

ildlife.onlinelibrary.w
iley.com

/doi/10.1002/w
sb.1571, W

iley O
nline L

ibrary on [03/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



found that the study area was likely supportive of Bell's vireo and phainopepla populations because of the generally

low canopy heights and moderate canopy cover, even if much of these patches were comprised of invasive tamarisk

(Haigh 1996). This is supported by independent observations of these species at this site (S. Cambrin, Desert

Conservation Program, unpublished data). Patch 5 did meet the vertical profile for blue grosbeak, but the patch is

small and there are no independent observations of that species in the area. We suggest that collecting similar

remotely‐sensed data and calculating the same metrics, but at other sites along the Virgin River, could be used to

provide a more complete picture of the river's vegetative structure which would allow better inference into

available habitat for all of the avian species of interest.

One important issue is that of scalability. Our field work at a 43.1‐ha (106.5 ac) field site took 2 days,

although it included the collection of additional data not presented in these analyses and the lidar data could have

been collected in a single day. Thus, with multiple field days, data sampling could be scaled up to larger areas,

especially when only a portion of the management area would benefit from such sampling. For example, desert

riparian habitats are relatively narrowly confined to riparian corridors or surround ponds, lakes, and seasonally

flooded marshes and thus contain substantial non‐habitat that need not be surveyed if the focus is on tree‐

nesting riparian birds.

There are caveats to the approach we propose here. First, avian breeding habitat niches likely have fuzzy

ecological boundaries. For example, waterfowl place nests nonrandomly, but do so across a gradient of vegetation

structure (Clark and Shutler 1999). Thus, our application of remote sensing, while able to capture vegetation

structure gradients, does not provide clear distinctions between used and unusable habitats. For example, blue

grosbeak generally nest high in canopies (e.g., 7.1 ± 0.9 m, Powell and Steidl 2000), a height characteristic of

individual trees in our study area but not of entire vegetation stands. Nonetheless, blue grosbeak have been

observed within the study area on separate surveys, indicating occupancy (either breeding, feeding, or transitory)

irrespective of our definition of blue grosbeak vegetative structure based on Powell and Steidl (2000). A second

caveat to this approach is that, although it may allow for quantifying vegetation structure quickly, at high detail, and

in areas inaccessible to field crews (Macfarlane et al. 2016), it requires data collection via specialized technology.

Free multispectral and lidar data are often available but are at dramatically lower resolution than data collected in

the field. For example, for our study area, freely available lidar data from the U.S. Geological Survey are at a

resolution of 13.2 points/m2 (U.S. Geological Survey 2021), whereas our aerial lidar data were 208.8 points/m2.

Widely available lidar data are likely not of sufficient resolution to quantify vegetation structure. A third caveat is

that the methods described herein quantify vegetation structure, but not necessarily occurrence or use by the

species of interest, which in some cases may be of more direct relevance to land and wildlife managers than

monitoring habitat structure (MacKenzie and Nichols 2004).

Future work would strongly benefit from field studies that directly link avian occurrence, nest placement, and

nest fate with similar remotely‐sensed metrics of avian habitat as we have presented here. The comparison of our

metrics to the field‐based metrics described in reference citations hampered us, and thus comparisons were

inherently imprecise (e.g., Powell and Steidl 2000). A more direct analysis would better elucidate potential

thresholds in the remotely‐sensed metrics to delineate habitat from non‐habitat using remote‐sensed data. For

example, 3‐dimensional coordinates of nests, compared to 3‐dimensional vegetation structure metrics like those

described here, would allow for definitive quantification of nesting habitat. Point counts hold some promise, but

also have inherent challenges. Specifically, the precise 3‐dimensional coordinates of the calling birds are usually

unknown and territorial calling locations may represent location selection based on perceived visibility instead of

habitat. If possible, comparison of remote‐sensed vegetation structure metrics with reproductive performance

would better differentiate source/sink habitats (Clark and Shutler 1999). In particular, developing 3‐dimensional

metrics for linking the matrix of voxels to avian nesting occurrence and success has great potential to better

quantify, understand, and predict how high‐resolution vegetation structure functions as habitat. Estimating nest

success may be cost prohibitive for multiple species, thus focusing on nest placement may make a more cost‐

effective solution to obtain the necessary data. We propose that many land and wildlife managers would benefit
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from using very high‐resolution, remotely‐sensed imagery to quantify habitat both in determining vegetation

structure as we did here and other uses like those mentioned in the introduction, and thus, its utility would increase

with additional applied research.

MANAGEMENT IMPLICATIONS

Quantifying vegetation composition and 3‐dimensional structure can help land and wildlife managers better

monitor vegetation structure and its potential to serve as nesting habitat. Such quantification allows for repeatable

monitoring over time at a fraction of the cost of field quantification of vegetation structure. When multiple species

are of management focus, objective quantification of vegetation composition and structure can elucidate which of

the suite of species are likely to be supported. For species not likely to be supported, quantification can also

highlight missing structural components that can guide habitat management and restoration. Future research would

benefit from linking metrics like we calculated here directly with field observations of nest locations to facilitate the

transition to remote‐sensed vegetation monitoring. We also note that while project‐specific, remote‐sensed data

are necessary to quantify vegetation structure at the level of detail we did here, future developments in satellite

technology will increase the resolution and availability of remote‐sensed data and should be assessed as such

technology is developed. The choice between using free and widely‐available data versus highly detailed

3‐dimensional data will require an assessment of resources available and the information needed.
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